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ABSTRACT: The Kerr/CFT correspondence has been recently broadened to the general ex-
tremal black holes under the assumption that the central charges from the non-gravitational
fields vanish. To confirm this proposal, we derive the expression of the conserved charges
in the Einstein-Maxwell-scalar theory with topological terms in four and five dimensions
and check that the above assumption was correct. Combining the computed central charge
with the expected form of the temperature, the Bekenstein-Hawking entropy of the general
extremal black holes in four and five dimensions can be reproduced by using the Cardy
formula.
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1 Introduction

Recently, a new duality called the Kerr/CFT correspondence was proposed in [1]. It was
shown that the black hole entropy of the four-dimensional extremal Kerr black hole with an-
gular momentum J can be reproduced by the statistical entropy of a dual two-dimensional
CFT with the central charge ¢ = 12J, which is evaluated following the approach originally
taken by Brown-Henneaux for AdSs [2]. Such a duality has been generalized to other black
holes including higher dimensions [3-15].! In these works, the central charge is usually
computed only from the gravitational field while contributions from other fields like vector
and scalar fields are neglected. Nevertheless, the correct Bekenstein-Hawking entropy can
be reproduced from the Cardy formula. Thus, we can conjecture that the central charge of
extremal black holes comes from only gravitational part and the contribution from other
fields vanishes. This conjecture was proven for the Kerr-Newman-AdS-dS black hole in

'Note that the appearance of one copy of a Virasoro algebra in the near horizon region of a generic non-
extreme black hole whose central charge is proportional to the horizon area was noted earlier in [39, 40].



the Einstein-Maxwell theory with cosmological constant [5]. In this paper, following the
cohomological methods [16-18], we derive the expression of the conserved charges for the
fairly general action,

1
s—1- | deF(R——fAB< ) uan“xB—vu)—Zka<x>FinJ“")+Stop, (L.1)

where D = 4 or 5. The “topological” term Sio, is given by

1 1

Stop =Tom / d4x\/_—gzhu( X)eH P ELFY (D =4), (1.2)
1 1

Stop =76— / d’z/=g QCUKMWAIF@Fjg (D =5) . (1.3)

Then, we evaluate the central charge for general extremal black holes in these theories and
prove the above conjecture. Combining the result and the expected form of the temper-
ature, we reproduce the Bekenstein-Hawking entropy of the general extremal black holes
by the Cardy formula in four and five dimensions respectively. This result supports the
extremal black hole/CFT correspondence suggested in [5].

The organization of this paper is as follows. In section 2, we consider the near horizon
solution of the extremal black hole in the theory (1.1). We recapitulate the boundary
conditions for the fluctuations of the near horizon geometry and the Virasoro asymptotic
symmetry algebra. In section 3, we review the formalism to obtain the conserved charges
for extremal black holes following [16-21]. In section 4, we obtain the explicit expression of
the conserved charges of the four-dimensional Lagrangian (1.1). In section 5, we calculate
the central charge of the Virasoro algebra and find that there is no contribution from the
non-gravitational part. Using this fact, we show that the Bekenstein-Hawking entropy can
be reproduced by the Cardy formula. In section 6, we repeat the calculation in the five-
dimensional theory (1.1). We find that there is no contribution from the non-gravitational
part and that the Bekenstein-Hawking entropy can be reproduced by the Cardy formula
again. We conclude in section 7.

2 Near horizon geometry of extreme black holes and Virasoro algebra

2.1 Near horizon geometry of extreme black holes

We focus on the case that fap(x) and kr;(x) are positive definite and the scalar potential
V(x) is non-positive in (1.1). It was shown in [22-24] that if we assume D — 3 rotational
symmetries with a fixed point in the asymptotic region and that the horizon topology is
not TP~2, then the near horizon solution of a stationary, extremal black hole solution in
the general action (1.1) is given by

d 2
ds?> = T(6) [—ertQ + TLQ + af d@Q] Z 7i;(0)(d¢' + K'rdt)(de’ + ki rdt)
t,j=1

J4
X =x0), A= "1 (0)(dg" + K'rdt) . (2.1)



where ¢ = 1,2 for D = 4,5, respectively. Notice that the above metric for D = 5 can
be obtained from the extremal black holes with a topologically S! x S? horizon and with
a topologically S3 horizon [22]. The near horizon geometry has the enhanced isometry
SL(2, R) x U(1)*, as was observed earlier using the attractor mechanism [25, 26], and the
scalar and vector fields are also invariant under this symmetry. The horizon of the extremal
black hole was located at » = 0. Thus, the Bekenstein-Hawking entropy is given by

Sgray = @ / N OEOLON (2.2)
0

where we denote v() = det(v;;(#)). We will consider the dual CFT description of (2.1)
and reproduce the Bekenstein-Hawking entropy (2.2).

2.2 Virasoro algebra in four dimensions

Now, we consider fluctuations of the near horizon geometry of the extremal black hole (2.1).
We should specify the boundary conditions for the fluctuations at » = co. We adopt the
boundary conditions given in [1, 5], which are determined in order to obtain the Virasoro
algebra as the asymptotic symmetry group. In four dimensions, the boundary conditions
are given by

r21/r? 1/r 1

1/ 1/r2 1/r
r 1/r |’

1

By ~ O al, ~O(r,1/r*1,1/r), (2.3)

in the basis (¢,7,0, ¢), where hy, = 6g,, and aﬁ = 5A£.2 Moreover, an additional nonlin-
ear boundary condition is imposed to forbid excitations above extremality. The diffeomor-

phisms and U(1)"-gauge transformations which preserve the boundary conditions (2.3) are?

Ele] = e(9)dy — re'(9)0y
Al = =1 (0)e(9) (2.4)

together with ¢ = 9; and AY = AZ(¢,0), which commute with (2.4) and (2.8). However, as
we will show in section 5, the latter asymptotic symmetries do not lead to central extensions.
Therefore, we will only focus on the Virasoro algebra of the extremal black hole. We take
the basis of €(@) as e,(¢) = —e " and define &,, = &[en], AL = Alle,]. Then, the
combined generator ¢,, = (&, A,,) satisfies the Virasoro algebra with zero central charge as

i, n] = (m — )i (2.5)

2Since the background scalar fields (2.1) are invariant under the Virasoro generators (2.4), one can
impose the boundary condition §x = 0. This boundary condition could be relaxed but such an analysis is
not needed for our purposes here.

3The boundary conditions for gauge fields are such that only the combined variation § = 0¢ + 0a with
A0, ¢) in (2.4) are asymptotic symmetries.



2.3 Virasoro algebra in five dimensions

In five dimensions, there are two boundary conditions to obtain the Virasoro algebra [3, 4].

One of them is?

r2 1/7“2 1/r 1 r
1/7“3 1/7’2 1/r 1/7“2

By ~ O r 1/r 1/r |, ai ~O(r,1/r2,1,1/r,1/r), (2.6)
1 1
1/r

in the basis (¢,7,0, ¢1, ¢2). Another boundary condition is

r2 1/ 1r r 1
1/r3 1/r2 1/r? 1)r

hyw ~ O 1/r 1/r 1)r |, aiw@(r,l/rQ,l,l/r,l/r). (2.7)
1/r 1
1

Then, the asymptotic symmetries are

Eoylel = €(@")9y — 1€ (60,
A{z) [6] = —f{(@)e((ﬁl), (Z =1, 2)7 (2'8)

where i = 1 and i = 2 are for (2.6) and (2.7) respectively. The boundary conditions are not
compatible with each other in the sense that there are no consistent boundary conditions
admitting both set of asymptotic fields or both sets of the Virasoro algebras. We take the
basis of €(¢?) as €,(¢') = —e~m?" and define Eiym = &) leml, A(Ii)m = A(IZ_) [€m]. Then, the

generator £y, = (§(iym, A(iym) satisfies the Virasoro algebra with zero central charge as

i[liyms Liayn) = (M — 1)l (iymin - (2.9)

In the following sections, we will calculate the central term of the Virasoro algebra
in (2.5) and (2.9).

3 Formalism for conserved charges

We need to construct the surface charges which generate the asymptotic symmetries (2.4)
and (2.8) to evaluate the central term of the Virasoro algebra in (2.5) and (2.9). In
this section, we review the formalism to obtain the conserved charges for gauge theories
following [16-21].

We take the variation of the D-form Lagrangian as

SL(®) = E(D)6D + dO(5®, B), (3.1)

4Qur previous comments in the 4d case on the boundary conditions for the scalar field, on the additional
extremality constraint and on the supplementary asymptotic symmetries are also applicable here.



where the @ is the generic name of all fields & = (gﬂ,,,A{L,XA). Then, the equations of
motion are given by E(®) = 0. The term O (P, dP) appears as a total divergence and does
not affect the equations of motion. Let 6.® denotes a general gauge transformation. We

suppose that the Lagrangian is gauge invariant up to a boundary term
0L(P) = dM, (D) . (3.2)

In the action (1.1), the gauge symmetries are the diffeomorphism and U(1)" gauge trans-
formations, 6.9, = LeGuws 5EA£ = EgA{L + VHAI and d.x? = EgXA. For these gauge
transformations, the boundary term M )(®) is given by

Mg 2 (®) =& L(®) + AdCp_2(A), (3.3)

where the last contribution appears when the Lagrangian contains a Chern-Simons term
of the form Cp(A) ~ ANFA---ANF.
The quantity E(®)d.P can be integrated by parts in order to remove the derivatives

acting on € as

E(3)5.® = eN(E(®),®) + dS.(E(®), ),
= dS.(E(®),®) . (3.4)

In the second equality, the Noether identities N(E(®),®) = 0 were used. The Noether
current S (F(®), ®) associated with the gauge transformation € is vanishing on-shell. We
regard the ¢ in (3.1) as the gauge transformation . and, then, combining equations (3.1)
and (3.2), we can express also

E(®)0.P = —dJ (D), (3.5)
where we defined the standard covariant phase space Noether current as
J(P) =O(0.P,P) — M (D) . (3.6)
Therefore, the current S (E(®), ®) + J(P) is identically closed and thus exact [27],
S(E(®),?) = —J(P) —dQ (D) . (3.7)

Using the properties of the Lie derivative L¢ = & - d + d§- and the on-shell relation E = 0,
we can write the variation of the M ») as

SMe.0)(®) = € - SL(®) + AdSCp_a(A),
= £ dO(6D,P) + AdSCp_z(A),
= d(—£ - ©(5®, B)) + LcO(5D, D) + AddCp_5(A) . (3.8)

Here, following [21], let us define IT, through the equation

5.0(5®, D) = LO(6D, D) + I (3, D) . (3.9)



Because the action contains the Chern-Simons terms only for the gauge fields, we have
II (0@, ®) =TI, (0A, A). We compute §d.L in two ways: we take the gauge transformation
Jde of (3.2) and the variation ¢ of (3.1) as

0 = 65.L(®) — 6.5L(P)
= d(SM.(®) — 6.0(5.D, D)),
= d(AdSCp_5(A) — TIA(6A, A)), (3.10)

at the last equality, (3.8) and (3.9) are used. Therefore, it exists a (D—2)-form ¥ such that
AdOCp_o(A) —TIA(0A, A) = dXA(0A, A) . (3.11)
Using the equation (3.8) and (3.9), we get
M A (P) = d(=§ - O(0D, P) + Xp(0A, A)) + 000D, D) . (3.12)
On-shell, we can thus express the variation of the Noether current S, as

0S(E(®), @) = —0O(6:P, @) + I M ) (P) — doQc(P),
= 5.0(6D,®) — 6O(5.P, ®) + Ak (6B, B) |
= w(5.D,5D) + dk™ (5D, D) , (3.13)

where we have defined the surface term
EEV(0D, ) = —0Q(P) — £ - O(dP, D) + Xp(0A, A), (3.14)
and the symplectic structure
w(0:P,0P) =0.0(6D, D) — 6O(0.P, D), (3.15)

which depends on € only through the variation of the fields 6.®. It follows from (3.13) that
kS (0®) is a conserved charge when the equations of motion E(®) = 0, the linearized equa-
tions of motion 0 E(®) = 0 and the symmetry conditions 6.® = 0 are satisfied. For asymp-
totic symmetries, the charges are asymptotically conserved when the equations of motion
E(®) = 0 and the linearized equations of motion 0 E(®) = 0 hold and if the condition

W(0:P,0P)|om =0, (3.16)
is satisfied. If the surface term is integrable,

k. (0®,®) =B (?), (3.17)
the equation (3.13) can also be used to define the generator of a gauge transformation as

D
Q.[®, 3] = —/Cse(E(cp),@HA /E)Ck€(6¢,¢)+Ne[<1>],

_ —/ S.(E@),0)+ [ B.(®) - [ B@)+N[3],  (3.18)
C oC ocC



where C' is a Cauchy surface and the integration | g is performed in the phase space of so-
lutions between a reference solution ® and ®. The boundary term [, Be(®) makes Q. dif-
ferentiable while the background term [, 50 B.(®) may cancel the background divergences.
The term N [®] is a normalization constant for the reference solution. Hereafter, we assume
the asymptotically conserved condition (3.16) and the integrability condition (3.17).5
Now, we make the observation that the definitions on the last line of (3.13) are am-

biguous by the redefinitions

W(6.D,6P) — w(5.®,0D) — dE(6.D, D),
kY (5D, B) — kS (5D, D) + £(5.D, 6P) | (3.19)

for an arbitrary &£(J.P,dP) anti-symmetric in §.® and d®. This ambiguity general-
izes the well-known ambiguity in the definition of the pre-symplectic form @(6®, ®) —
(0P, ®) — dE'(6®,®) which implies (3.19) with £(5.P,0P) = §.E' (6P, D) — IE' (6P, D).
This ambiguity is not relevant for the exact symmetries where 6.® = 0 but has to be fixed
in the context of the asymptotic symmetries.

Following the covariant phase space method [19, 20|, one could choose the surface
charge kS (d®, ®) which does not contain terms proportional to 6.® and its derivatives.

The proposal of [16-18] consists in fixing the surface term k.(d®) by acting on the
Noether current S (E(®), ) with a contracting homotopy Ise. When acting on D — 1
forms which contain at most second derivatives of the fields, the contracting homotopy Iss
can be written as

1.9 2 1 0 0
Tse = (55(1)86“@ * <§‘M) - 5(1)‘%) aamu@) ddar’ (3:20)

where the derivative with respect to dz* is defined by

By dz® A - NdxP = péLalde‘Q A Adzoel (3.21)

This procedure yields a result which depends only on the equations of motion of the La-
grangian. The surface term k.(6®) can be more easily expressed in terms of the covariant

phase space expression as
E (60, D) = k& (6D, B) 4 £ (5D, 6D), (3.22)

where the supplementary term Shom((SECP, d®) is given by

hom o l 8 8
EM(02,60) = S0l gp o

O(6d, ), (3.23)

when O (d®, P) contains at most first derivatives of the fields. Here, anti-symmetrization
of 6® and 0.P factors is understood.

The charge Q[®, ®] generates the asymptotic symmetries e through the covariant Pois-
son brackets under assumptions about the integrability, the conservation and the finiteness

® At least, the integrability was shown for the Virasoro generators on the near horizon geometry of the
extreme Kerr solution [1].



of the charges as well as under the condition faM 6Shom(5<1>, 0®) = 0. The algebra of the
asymptotic symmetries is the Poisson bracket algebra of the charges themselves,

5:Qc[®] = {Q.[®, 8], Qe[®, B} = /a ko),

= Q[eﬂ [q), ‘E — N[Qa [q)] + /ac ke((;g(i), ‘i>) , (3.24)

where the second line has been obtained from [17, 18]. The last term is recognized as the

central extension term in the algebra.

4 Charges for the general Lagrangian in four dimensions

In the previous section, we formally constructed the conserved charges for asymptotic
symmetries. In this section, we will explicitly calculate the conserved charges of the general
action (1.1) in four dimensions.

4.1 General action and equations of motion

The variation of the four-dimensional Lagrangian (1.1) is

1

V=9|9E"5g,, + WEYSAL + O Eq6xC ] + V=gV, X", (4.1)

where (@ prv_ (4) EY and ) E¢ are the equations of motion given by

1 1
(g)Euu = _GMV - ZguquB(X)apXAapXB + ngB(X)auXAauxB
1 1 1 .
5oV 00 + gk 00 (P20 = 0, ELFP) 0. 42
WEY =V, [kis()F™ — P hyy(x)F),] =0, (4.3)
1
WEq = —§fAB,c(X)5uXA3“XB + V. (fes()VAXP) = Ve(x)
1 1
— ke COF M P + 2hisc ()" B, Bl = 0, (4.4)

and the total divergence X* is

1
XH(@,50) = 1= [(T,h" = Vh)+ (—hrs P + his ()7 Fy, )l fan() VX 0x"] .
(4.5)
Here, we define & = (g;w,Aﬁ,XA), hyw = 0gu, and afL = 514{, Then, the variation of
4-form Lagrangian is
0L =Eé®+V, X'e=Ei®+dxX, (4.6)

where E0® = € [(Q)E“”éguy + A EYsAL 4 (X)Ecéxc] /(167) and the Hodge dual of X* is
defined by (¥X)agy = X €u08,- From (3.1) and (4.6), we can read off the ® as

O(6®, @) = «X (50, P) . (4.7)



The on-shell vanishing Noether current is given by
1

H -

S(&A) T 167

in the vector form. We can rewrite the on-shell vanishing Noether current in the 3-form as

[2<9>E5§“ + kAL + Af)] , (4.8)

(S(g,A))aB'y = SéA)Eﬂaﬁ’Y and it satisfies dS(&A) = E(;&A(I).

4.2 Current for the diffeomorphism
The Noether current for the diffeomorphism ¢ (3.6) is

Je(®) = O(Led,®) — ¢ - L(®) . (4.9)
Now, it is convenient to define the vector current JE' by (J¢)asasas = Jf €pasazas- Then,
the Jg is given by

JE(@) = XM (Le®, D) — L (D). (4.10)
where the L is the Lagrangian which does not include \/—g, that is, £ = \/—gL. The Lie
derivatives for g, A{L and y4 are given by

Legu =Vl + Vil LAl =¢'Fl +V,(Al¢), Lo =¢'Vux* . (411)

We can rewrite JéL + 8% | as a total divergence as

(£,0)
Jé‘(fb) + Sé,o)(q)) = VVY;"(CI)) ; (4.12)
where Yg“ " is defined by
1
YE(®) = [V7€" = VI 4 (ks COF™ + his (O M E) AP . (413)
Therefore, the Q¢ defined by J¢ + S(¢ o) = —dQ is
Qu(®) = — + Vi(®). (4.14)

where the Hodge dual of Y/ is defined by (+xYg)as = (1/2)Y"€\agp-

4.3 Current for the U(1)"-gauge transformation

In the general action (1.1), there are U(1)"-gauge symmetries and we can also construct
the current of the U(1)™-gauge transformation. The vector current for the U(1)"-gauge

transformation is

JH (@) = XH(0pD, D), (4.15)
where the U(1)"-gauge transformations for g, AL and x* are
SAGuw =0, OpA], = 9N, aaxt=0. (4.16)
The J) + Séf),A) can be written as
JA (@) + S(g ) (@) = V,YV(2), (4.17)
where Y} is defined by
1
Y{¥(®) = Ton (=krsCOF7™ + hrs(x)e™ P Fi) AT (4.18)
Therefore, the Qx defined by Jx + S(,n) = —dQx is
QA(P) = —xY) (D) . (4.19)



4.4 Conserved charges

On-shell, the generator for the diffeomorphism ¢ and U(1)"-gauge transformations A’ is

given by o
Qen[P, @] = A /ac ke A (6@, ®) + N[P], (4.20)
where @ is the reference solution and kg, is defined by (3.22) and can be written as
ke A(00,®) = —0Q¢ (D) — QA (D) — & - O(6D, D) + EMM(J 2P, ID) . (4.21)

We can calculate the 0Q’s by taking the variation of (4.14) and (4.19). The expression of
£hom can be obtained from (3.23) and (4.7). We summarize the result as

ke A0, ®) = KE™ + k) + kX + kY, (4.22)
where
1 1
kg™ = 8—7T(dD—2x)W{5”vuh — IV I+ & VIR 4 ShVTE = RV ¢
1
+5h™ (Vg + vagﬂ)} : (4.23)

1 — 17 14
kiy = E(dD 22) [{ — krgaQOF ™ ox™ + 2k ()W F7

g ()SEI %hk; J(X)FJW}(AggP + AL

—krg () F" aler — 267k (X)F7a),

(00" (Ll + 0,1 (124
O 1 VAO
kh = 8_7T(d2$);w 7L hr g a(X) Fir0x™ + hig(x)0F5, HALEP + AT)
+6W>‘UhU(X)F5\]oa£§p - 2£Vh[J(X)EM>\pUFl;]O.(Z§
—2hp 5 (X)e" 7 al (L AL + 0N )} , (4.25)
1
kY = g(dD_Qx)W € fap(x)V*xPox?t . (4.26)
Here we define (dD*px)mmup = mem---uwml---apdwaﬁl Ao A dz®p, afL = 514!{7

OF l{y = dya,—0ya, and SFIH = ghr g U(SFPIU. Now, we are considering the four-dimensional
spacetime and substitute D = 4 into (4.23), (4.24) and (4.26), but all these equations
except (4.25) are applicable to any D > 2 as well.

5 Central charges for four-dimensional extreme black holes

Now, we evaluate the central charge for the four-dimensional extremal black hole. In four
dimensions, the near horizon solution (2.1) can be written as

dr?
ds* = T(0) | —r2dt* + =+ a(0)do*| + ~v(0)(de + krdt)?, (5.1)

A = x40, Al = f1(0)(d¢ + krdt) . (5.2)

,10,



We will use this solution as the reference solution ®. First, we can check that the central

extension in the algebra of two asymptotic symmetries generated by Aq(0,t) and As(6,t)

is zero. Indeed, putting £ = 0, 6x* = 0, hy =0, A = Aq1(0,t) and a, = 0,A2(0,1), we see

that all expressions (4.23) to (4.26) are zero when evaluated on the sphere at infinity 9C.
For the Virasoro generators (2.4), the algebra (3.24) becomes

i{Qm, Qn}en = (771—7”L)C2m+n+i/(9 K A (06, +08,) @, @) =i Nige, pn).(6000)][2] 5 (5:3)

where we define Q,,, = Q¢,, ., [®, ®] and &, and Al are defined under (2.4). The central
charge will be read off from the second term on the right-hand side of (5.3).

Because of (d¢,, + oa,, )x = 0, there is no contribution to the central charge from §x*
n (4.24), (4.25) and (4.26). Thus, the contribution from kX is zero. The contributions
from k¥ and k%P are given by

2/ kLA (0 +03) (5.4)

where we put £ = €[] and ¢ = £[¢] and define = dp. One finds that the k¥ and kP

vanish exactly due to the relation (2.4). The remaining contribution k& is

i RE (@, + o)
oC

- / vy | OO o) et — ety + 1) e en)]
— k5m+n< /dH\/—+m/d91/ ) (5.6)

We can read off the central charge from the m?3 term in (5.6) as

¢ =3k /0 " 40T 0) - (5.7)

This is the same result as the one obtained in [5]. The charges k& (d®,®) defined in
the covariant phase space method differ from k.(d®, ®) by the supplementary contribution
ghom “see (3.22). However, we checked that these charges lead to the same results: the
contributions from k% k'*P and kX are zero and we can obtain the same central charge
s (5.7). Therefore, the covariant phase space method [19, 20] and the cohomological
method [16-18] give the same central charges.
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The term linear in (5.6) can be absorbed by an appropriate choice of normalization of

Nty = Omas [ @6 /%’2@3, (5.8)

the algebra (5.3) becomes

Qo. Indeed, if we choose

iH{Qum, Quyen = (M —n)Qun + §m3am+n . (5.9)

The temperature formula of the left handed dual CFT is conjectured in [5] from the
explicit calculation for the Kerr-Newman-AdS black hole as
1

T, = — 5.10
L= onk> ( )

and, using the Cardy formula Scpr = (72/3)cTy,, we obtain the entropy of the dual CFT

Sorr = 2 /O WNOEOLOR (5.11)

This result agrees with the Bekenstein-Hawking entropy of the four-dimensional extremal
black hole (2.2).

6 Extreme black holes in five dimensions

In the previous section, we found that the central charges for the non-gravitational parts
vanish for the fairly general extremal black holes and we reproduced the Bekenstein-
Hawking entropy in four dimensions. We will show that this is also the case in five di-
mensions. Moreover, as far as the derivation of the charges is concerned, we will keep all
formulae general for any odd dimensions D = 2N +1. We consider the (2/N+1)-dimensional
generalization of the action (1.1),

! 1 1 v 1= v
§=16- /dQN“w—g (R_ifAB(X)auXA(?“XB—V(X)— k1 (O, P/ + = Fiu) 7
(6.1)
where
FIY = Cryk..pe - AP . FL . (6.2)

In five dimensions (N = 2), under some assumptions described in section 2.1, the near
horizon solution of the above theory (6.1) is given by (2.1) [22].
6.1 Conserved charges

The most of the calculation to obtain the expression of the conserved charges is the same
as the four-dimensional case and the gravitational, the U(1) and the scalar contributions
can be read off directly from (4.23)-(4.24)-(4.26). Thus, what we should consider is only
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the contribution from the Chern-Simons term in (6.1).% In the similar fashion as done in

section 3 and 4, we can obtain the Chern-Simons contribution for the conserved charge as

kgf(éA, A) = —5Qg§(A) —£- @Y (5A, A) + Z\(JA, A) + EMM(L A+ dA,5A), (6.3)

where
QER(A) = —1 (P2, [ (aler + A1) (6.4)
OC5(5A, A) = %(d’j_lx)u [F;L”Mﬂ , (6.5)
TA(5A, A) = 1%(dD*%)WCUK...LAfeWSa4 opengl FE o FL o
(6.6)
EMM(Le A+ dA,GA) = —%(df’—%)w(c@g + A7)
xCryk..Le" P P7sATAN L FL (6.7)

A shorter route to find the expression for the Chern-Simons contribution consists in first

writing the Noether current,

1 _ N+1
o (P ), S Cry P E S (A + AT

Since the current depends at most on the first derivatives of A, only the first term in (3.20)

S5(A) =

contributes, and we get as a result
N(N +1)
167

We have checked that the expressions (6.3) and (6.8) only differ by a total derivative and
that the expression (6.8) is identical to the one found in [28].

kgﬁ(aA,A) - (dP21) 1, (Cry e 1P PSATFS;  FR) (AP + AT) L (6.8)

6.2 Central charge

Let us calculate the central charge for the near horizon metric of the five-dimensional
extremal black holes (2.1). For each set of the boundary conditions (2.6) and (2.7), there are
two asymptotic symmetries given in (2.8). For each of these sets of asymptotic symmetries,
the contribution to the central term from the scalar fields is zero because of (d¢, +6a,)x = 0.

The contributions from k¥ and k€ are

. F ~ ~ - =

o G 0,89 69)
- ' 1 (9)7(9) i oJ ~1 ol I / ~ XTI
__F dfdg' de® WkIJ(X)Zj:kjfj (9) e(fi€+A(i))_€(fi€+A(i)) )

- cs ) NG &

Z/a kg(i)vA(i)(((;i(i) + 6A(¢))(I)’ ) (6.10)

37 ~ .

=5 dde' de*Cryx fg [( Fle+ A (FEe+ ALY — (f e + AL (e + gg)]

5The conserved charges for the Chern-Simons Lagrangian has been already calculated in [28] and in [29-
31] without the supplementary term & hom,
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where we put &) = Ep)lel, &oy) = Ele], v = det(yy), ' = d/d¢" and, in (6.11), j # i.
Substituting the explicit form of A{i) in (2.8), we can find that the contributions from kf

and k©° vanish exactly. The contribution from k2" is

. grav R
' /80 kf(i)mv/\(i)m (g, + 0405y ) 2, P)

_ i 1,2 [a@)v0) ], o G o
= ~Tom dfd¢ de ”71“(9) E'T(0) (€60 — €mEn) + Ej ki (0)(eme,, — €,€n) | 5
s [ [ [O0 5,
= i [ dg\/T Y ky0)| . (611
= Oman |M°K" [ dO\/T(0)c(0)v(0) +m [ db ) j k75 (0) (6.11)
From the m? term in (6.11), the central charges are found to be

c; = 6k’ /7r do\/T(0)a(0)y(0) for i=1,2. (6.12)
0

Even if we put o™

= 0, we can get the same central charge. So the covariant phase
space methods [19, 20] and the cohomological methods [16-18] give the same results even
in five dimensions.

The temperature formulae of dual CFTs are conjectured in [7] starting from the higher-

dimensional Kerr-AdS black holes as

1
2kt

T, = for i =1,2. (6.13)

Thus, using the Cardy formula, we can obtain the entropy of the dual CFTs as

2 2

Sepr = %clTl — %CQTQ — 2 / d6/T(0)c(0)7(6) . (6.14)
0

The two boundary conditions (2.6) and (2.7) give the same entropy. This result coincides
with the Bekenstein-Hawking entropy of the five-dimensional extremal black hole (2.2).

7 Conclusion

Any extremal black hole in generic 4d Einstein-Maxwell-scalar theory with topological
terms and 5d Einstein-Maxwell-Chern-Simons-scalar theory has a near-horizon geometry
whose asymptotic symmetries contain one (in 4d) or two (in 5d) centrally-extended Virasoro
algebra(s). We checked that only the Einstein Lagrangian contributes to the value of the
central charge, and therefore, assuming the conjectured temperature, that the Bekenstein-
Hawking entropy of any extremal black hole is correctly reproduced. These results support
the extreme black hole/CFT duality suggested in [5].

The central charges have been computed using both cohomological and covariant phase
space methods and have shown to agree. Our results are expected to hold in any dimension,
because the expressions for the charges and the near-horizon metric are straightforward
generalizations of the four and five-dimensional cases.
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In the derivation of the central charge, we used the general action (1.1) and the near
horizon extremal metric (2.1) which can be obtained from (1.1) under very mild assump-
tions. In particular, the result holds for any topology of the horizon except TP~2. There-
fore, our result is applicable to five-dimensional black holes with non-trivial topology such
as the black rings [32, 33| as long as the horizon is simply connected. Extremal black
saturns and di-rings solutions are not known but are conjectured to exist (see e.g. [34-38]).
In the case of the black holes with disconnected horizons, including the extremal black
saturns and di-rings, we could apply the extreme black hole/CFT correspondence to each
horizon. Then the Bekenstein-Hawking entropy would be reproduced as the sum of the
entropies of dual CFTs.
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