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1 Introduction

Recently, a new duality called the Kerr/CFT correspondence was proposed in [1]. It was

shown that the black hole entropy of the four-dimensional extremal Kerr black hole with an-

gular momentum J can be reproduced by the statistical entropy of a dual two-dimensional

CFT with the central charge c = 12J , which is evaluated following the approach originally

taken by Brown-Henneaux for AdS3 [2]. Such a duality has been generalized to other black

holes including higher dimensions [3–15].1 In these works, the central charge is usually

computed only from the gravitational field while contributions from other fields like vector

and scalar fields are neglected. Nevertheless, the correct Bekenstein-Hawking entropy can

be reproduced from the Cardy formula. Thus, we can conjecture that the central charge of

extremal black holes comes from only gravitational part and the contribution from other

fields vanishes. This conjecture was proven for the Kerr-Newman-AdS-dS black hole in

1Note that the appearance of one copy of a Virasoro algebra in the near horizon region of a generic non-

extreme black hole whose central charge is proportional to the horizon area was noted earlier in [39, 40].

– 1 –



J
H
E
P
0
5
(
2
0
0
9
)
0
7
7

the Einstein-Maxwell theory with cosmological constant [5]. In this paper, following the

cohomological methods [16–18], we derive the expression of the conserved charges for the

fairly general action,

S =
1

16π

∫

dDx
√−g

(

R− 1

2
fAB(χ)∂µχA∂µχB −V (χ)− 1

4
kIJ(χ)F I

µνF Jµν

)

+ Stop , (1.1)

where D = 4 or 5. The “topological” term Stop is given by

Stop =
1

16π

∫

d4x
√−g

1

4
hIJ(χ)ǫµνρσF I

µνF J
ρσ (D =4) , (1.2)

Stop =
1

16π

∫

d5x
√−g

1

2
CIJKǫαβγρσAI

αF J
βγFK

ρσ (D =5) . (1.3)

Then, we evaluate the central charge for general extremal black holes in these theories and

prove the above conjecture. Combining the result and the expected form of the temper-

ature, we reproduce the Bekenstein-Hawking entropy of the general extremal black holes

by the Cardy formula in four and five dimensions respectively. This result supports the

extremal black hole/CFT correspondence suggested in [5].

The organization of this paper is as follows. In section 2, we consider the near horizon

solution of the extremal black hole in the theory (1.1). We recapitulate the boundary

conditions for the fluctuations of the near horizon geometry and the Virasoro asymptotic

symmetry algebra. In section 3, we review the formalism to obtain the conserved charges

for extremal black holes following [16–21]. In section 4, we obtain the explicit expression of

the conserved charges of the four-dimensional Lagrangian (1.1). In section 5, we calculate

the central charge of the Virasoro algebra and find that there is no contribution from the

non-gravitational part. Using this fact, we show that the Bekenstein-Hawking entropy can

be reproduced by the Cardy formula. In section 6, we repeat the calculation in the five-

dimensional theory (1.1). We find that there is no contribution from the non-gravitational

part and that the Bekenstein-Hawking entropy can be reproduced by the Cardy formula

again. We conclude in section 7.

2 Near horizon geometry of extreme black holes and Virasoro algebra

2.1 Near horizon geometry of extreme black holes

We focus on the case that fAB(χ) and kIJ(χ) are positive definite and the scalar potential

V (χ) is non-positive in (1.1). It was shown in [22–24] that if we assume D − 3 rotational

symmetries with a fixed point in the asymptotic region and that the horizon topology is

not TD−2, then the near horizon solution of a stationary, extremal black hole solution in

the general action (1.1) is given by

ds2 = Γ(θ)

[

−r2dt2 +
dr2

r2
+ α(θ)dθ2

]

+

ℓ
∑

i,j=1

γij(θ)(dφi + kirdt)(dφj + kjrdt) ,

χA = χA(θ), AI =

ℓ
∑

i=1

f I
i (θ)(dφi + kirdt) . (2.1)
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where ℓ = 1, 2 for D = 4, 5, respectively. Notice that the above metric for D = 5 can

be obtained from the extremal black holes with a topologically S1 × S2 horizon and with

a topologically S3 horizon [22]. The near horizon geometry has the enhanced isometry

SL(2, R) × U(1)ℓ, as was observed earlier using the attractor mechanism [25, 26], and the

scalar and vector fields are also invariant under this symmetry. The horizon of the extremal

black hole was located at r = 0. Thus, the Bekenstein-Hawking entropy is given by

Sgrav =
(2π)ℓ

4

∫ π

0
dθ
√

Γ(θ)α(θ)γ(θ) , (2.2)

where we denote γ(θ) ≡ det(γij(θ)). We will consider the dual CFT description of (2.1)

and reproduce the Bekenstein-Hawking entropy (2.2).

2.2 Virasoro algebra in four dimensions

Now, we consider fluctuations of the near horizon geometry of the extremal black hole (2.1).

We should specify the boundary conditions for the fluctuations at r = ∞. We adopt the

boundary conditions given in [1, 5], which are determined in order to obtain the Virasoro

algebra as the asymptotic symmetry group. In four dimensions, the boundary conditions

are given by

hµν ∼ O











r2 1/r2 1/r 1

1/r3 1/r2 1/r

1/r 1/r

1











, aI
µ ∼ O(r, 1/r2, 1, 1/r) , (2.3)

in the basis (t, r, θ, φ), where hµν ≡ δgµν and aI
µ ≡ δAI

µ.2 Moreover, an additional nonlin-

ear boundary condition is imposed to forbid excitations above extremality. The diffeomor-

phisms and U(1)n-gauge transformations which preserve the boundary conditions (2.3) are3

ξ[ǫ] = ǫ(φ)∂φ − rǫ′(φ)∂r ,

ΛI [ǫ] = −f I(θ)ǫ(φ) , (2.4)

together with ξ = ∂t and ΛI = ΛI(t, θ), which commute with (2.4) and (2.8). However, as

we will show in section 5, the latter asymptotic symmetries do not lead to central extensions.

Therefore, we will only focus on the Virasoro algebra of the extremal black hole. We take

the basis of ǫ(φ) as ǫn(φ) = −e−inφ and define ξm = ξ[ǫm], ΛI
m = ΛI [ǫm]. Then, the

combined generator ℓm ≡ (ξm,Λm) satisfies the Virasoro algebra with zero central charge as

i[ℓm, ℓn] = (m − n)ℓm+n . (2.5)

2Since the background scalar fields (2.1) are invariant under the Virasoro generators (2.4), one can

impose the boundary condition δχ = 0. This boundary condition could be relaxed but such an analysis is

not needed for our purposes here.
3The boundary conditions for gauge fields are such that only the combined variation δ ≡ δξ + δΛ with

Λ(θ, φ) in (2.4) are asymptotic symmetries.
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2.3 Virasoro algebra in five dimensions

In five dimensions, there are two boundary conditions to obtain the Virasoro algebra [3, 4].

One of them is4

hµν ∼ O















r2 1/r2 1/r 1 r

1/r3 1/r2 1/r 1/r2

1/r 1/r 1/r

1 1

1/r















, aI
µ ∼ O(r, 1/r2, 1, 1/r, 1/r) , (2.6)

in the basis (t, r, θ, φ1, φ2). Another boundary condition is

hµν ∼ O















r2 1/r2 1/r r 1

1/r3 1/r2 1/r2 1/r

1/r 1/r 1/r

1/r 1

1















, aI
µ ∼ O(r, 1/r2, 1, 1/r, 1/r) . (2.7)

Then, the asymptotic symmetries are

ξ(i)[ǫ] ≡ ǫ(φi)∂φ − rǫ′(φi)∂r ,

ΛI
(i)[ǫ] ≡ −f I

i (θ)ǫ(φi) , (i = 1, 2) , (2.8)

where i = 1 and i = 2 are for (2.6) and (2.7) respectively. The boundary conditions are not

compatible with each other in the sense that there are no consistent boundary conditions

admitting both set of asymptotic fields or both sets of the Virasoro algebras. We take the

basis of ǫ(φi) as ǫn(φi) = −e−inφi
and define ξ(i)m = ξ(i)[ǫm], ΛI

(i)m = ΛI
(i)[ǫm]. Then, the

generator ℓ(i)m ≡ (ξ(i)m,Λ(i)m) satisfies the Virasoro algebra with zero central charge as

i[ℓ(i)m, ℓ(i)n] = (m − n)ℓ(i)m+n . (2.9)

In the following sections, we will calculate the central term of the Virasoro algebra

in (2.5) and (2.9).

3 Formalism for conserved charges

We need to construct the surface charges which generate the asymptotic symmetries (2.4)

and (2.8) to evaluate the central term of the Virasoro algebra in (2.5) and (2.9). In

this section, we review the formalism to obtain the conserved charges for gauge theories

following [16–21].

We take the variation of the D-form Lagrangian as

δL(Φ) = E(Φ)δΦ + dΘ(δΦ,Φ) , (3.1)

4Our previous comments in the 4d case on the boundary conditions for the scalar field, on the additional

extremality constraint and on the supplementary asymptotic symmetries are also applicable here.
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where the Φ is the generic name of all fields Φ = (gµν , AI
µ, χA). Then, the equations of

motion are given by E(Φ) = 0. The term Θ(Φ, δΦ) appears as a total divergence and does

not affect the equations of motion. Let δǫΦ denotes a general gauge transformation. We

suppose that the Lagrangian is gauge invariant up to a boundary term

δǫL(Φ) = dMǫ(Φ) . (3.2)

In the action (1.1), the gauge symmetries are the diffeomorphism and U(1)n gauge trans-

formations, δǫgµν = Lξgµν , δǫA
I
µ = LξA

I
µ + ∇µΛI and δǫχ

A = Lξχ
A. For these gauge

transformations, the boundary term M(ξ,Λ)(Φ) is given by

M(ξ,Λ)(Φ) = ξ · L(Φ) + Λ dCD−2(A) , (3.3)

where the last contribution appears when the Lagrangian contains a Chern-Simons term

of the form CD(A) ∼ A ∧ F ∧ · · · ∧ F .

The quantity E(Φ)δǫΦ can be integrated by parts in order to remove the derivatives

acting on ǫ as

E(Φ)δǫΦ = ǫN(E(Φ),Φ) + dSǫ(E(Φ),Φ) ,

= dSǫ(E(Φ),Φ) . (3.4)

In the second equality, the Noether identities N(E(Φ),Φ) ≡ 0 were used. The Noether

current Sǫ(E(Φ),Φ) associated with the gauge transformation ǫ is vanishing on-shell. We

regard the δ in (3.1) as the gauge transformation δǫ and, then, combining equations (3.1)

and (3.2), we can express also

E(Φ)δǫΦ = −dJǫ(Φ) , (3.5)

where we defined the standard covariant phase space Noether current as

Jǫ(Φ) = Θ(δǫΦ,Φ) − Mǫ(Φ) . (3.6)

Therefore, the current Sǫ(E(Φ),Φ) + Jǫ(Φ) is identically closed and thus exact [27],

Sǫ(E(Φ),Φ) = −Jǫ(Φ) − dQǫ(Φ) . (3.7)

Using the properties of the Lie derivative Lξ = ξ · d + dξ· and the on-shell relation E = 0,

we can write the variation of the M(ξ,Λ) as

δM(ξ,Λ)(Φ) = ξ · δL(Φ) + Λ dδCD−2(A) ,

= ξ · dΘ(δΦ,Φ) + Λ dδCD−2(A) ,

= d(−ξ ·Θ(δΦ,Φ)) + LξΘ(δΦ,Φ) + Λ dδCD−2(A) . (3.8)

Here, following [21], let us define Πǫ through the equation

δǫΘ(δΦ,Φ) = LξΘ(δΦ,Φ) + Πǫ(δΦ,Φ) . (3.9)

– 5 –
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Because the action contains the Chern-Simons terms only for the gauge fields, we have

Πǫ(δΦ,Φ) = ΠΛ(δA,A). We compute δδǫL in two ways: we take the gauge transformation

δǫ of (3.2) and the variation δ of (3.1) as

0 = δδǫL(Φ) − δǫδL(Φ) ,

= d(δMǫ(Φ) − δǫΘ(δǫΦ,Φ)) ,

= d(ΛdδCD−2(A) − ΠΛ(δA,A)) , (3.10)

at the last equality, (3.8) and (3.9) are used. Therefore, it exists a (D−2)-form ΣΛ such that

ΛdδCD−2(A) − ΠΛ(δA,A) = dΣΛ(δA,A) . (3.11)

Using the equation (3.8) and (3.9), we get

δM(ξ,Λ)(Φ) = d(−ξ ·Θ(δΦ,Φ) + ΣΛ(δA,A)) + δǫΘ(δΦ,Φ) . (3.12)

On-shell, we can thus express the variation of the Noether current Sǫ as

δSǫ(E(Φ),Φ) = −δΘ(δǫΦ,Φ) + δM(ξ,Λ)(Φ) − dδQǫ(Φ) ,

= δǫΘ(δΦ,Φ) − δΘ(δǫΦ,Φ) + dkcov
ǫ (δΦ,Φ) ,

= ω(δǫΦ, δΦ) + dkcov
ǫ (δΦ,Φ) , (3.13)

where we have defined the surface term

kcov
ǫ (δΦ,Φ) = −δQǫ(Φ) − ξ ·Θ(δΦ,Φ) + ΣΛ(δA,A) , (3.14)

and the symplectic structure

ω(δǫΦ, δΦ) = δǫΘ(δΦ,Φ) − δΘ(δǫΦ,Φ) , (3.15)

which depends on ǫ only through the variation of the fields δǫΦ. It follows from (3.13) that

kcov
ǫ (δΦ) is a conserved charge when the equations of motion E(Φ) = 0, the linearized equa-

tions of motion δE(Φ) = 0 and the symmetry conditions δǫΦ = 0 are satisfied. For asymp-

totic symmetries, the charges are asymptotically conserved when the equations of motion

E(Φ) = 0 and the linearized equations of motion δE(Φ) = 0 hold and if the condition

ω(δǫΦ, δΦ)|∂M = 0 , (3.16)

is satisfied. If the surface term is integrable,

kǫ(δΦ,Φ) = δBǫ(Φ) , (3.17)

the equation (3.13) can also be used to define the generator of a gauge transformation as

Qǫ[Φ, Φ̄] = −
∫

C

Sǫ(E(Φ),Φ) +

∫ Φ

Φ̄

∫

∂C

kǫ(δΦ,Φ) + Nǫ[Φ̄] ,

= −
∫

C

Sǫ(E(Φ),Φ) +

∫

∂C

Bǫ(Φ) −
∫

∂C

Bǫ(Φ̄) + Nǫ[Φ̄] , (3.18)

– 6 –
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where C is a Cauchy surface and the integration
∫ Φ
Φ̄ is performed in the phase space of so-

lutions between a reference solution Φ̄ and Φ. The boundary term
∫

∂C
Bǫ(Φ) makes Qǫ dif-

ferentiable while the background term
∫

∂C
Bǫ(Φ̄) may cancel the background divergences.

The term Nǫ[Φ̄] is a normalization constant for the reference solution. Hereafter, we assume

the asymptotically conserved condition (3.16) and the integrability condition (3.17).5

Now, we make the observation that the definitions on the last line of (3.13) are am-

biguous by the redefinitions

ω(δǫΦ, δΦ) → ω(δǫΦ, δΦ) − dE(δǫΦ, δΦ) ,

kcov
ǫ (δΦ,Φ) → kcov

ǫ (δΦ,Φ) + E(δǫΦ, δΦ) , (3.19)

for an arbitrary E(δǫΦ, δΦ) anti-symmetric in δǫΦ and δΦ. This ambiguity general-

izes the well-known ambiguity in the definition of the pre-symplectic form Θ(δΦ,Φ) →
Θ(δΦ,Φ) − dE

′(δΦ,Φ) which implies (3.19) with E(δǫΦ, δΦ) = δǫE
′(δΦ,Φ) − δE ′(δǫΦ,Φ).

This ambiguity is not relevant for the exact symmetries where δǫΦ = 0 but has to be fixed

in the context of the asymptotic symmetries.

Following the covariant phase space method [19, 20], one could choose the surface

charge kcov
ǫ (δΦ,Φ) which does not contain terms proportional to δǫΦ and its derivatives.

The proposal of [16–18] consists in fixing the surface term kǫ(δΦ) by acting on the

Noether current Sǫ(E(Φ),Φ) with a contracting homotopy IδΦ. When acting on D − 1

forms which contain at most second derivatives of the fields, the contracting homotopy IδΦ

can be written as

IδΦ =

(

1

2
δΦ

∂

∂∂µΦ
+

(

2

3
∂λΦ − 1

3
Φ∂λ

)

∂

∂∂λ∂µΦ

)

∂

∂dxµ
, (3.20)

where the derivative with respect to dxµ is defined by

∂

∂dxµ
dxα1 ∧ · · · ∧ dxαp = p δ[α1

µ dxα2 ∧ · · · ∧ dxαp] . (3.21)

This procedure yields a result which depends only on the equations of motion of the La-

grangian. The surface term kǫ(δΦ) can be more easily expressed in terms of the covariant

phase space expression as

kǫ(δΦ,Φ) = kcov
ǫ (δΦ,Φ) + E

hom(δǫΦ, δΦ) , (3.22)

where the supplementary term E
hom(δǫΦ, δΦ) is given by

E
hom(δǫΦ, δΦ) =

1

2
δǫΦ

∂

∂∂µΦ

∂

∂dxµ
Θ(δΦ,Φ) , (3.23)

when Θ(δΦ,Φ) contains at most first derivatives of the fields. Here, anti-symmetrization

of δΦ and δǫΦ factors is understood.

The charge Qǫ[Φ, Φ̄] generates the asymptotic symmetries ǫ through the covariant Pois-

son brackets under assumptions about the integrability, the conservation and the finiteness

5At least, the integrability was shown for the Virasoro generators on the near horizon geometry of the

extreme Kerr solution [1].

– 7 –
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of the charges as well as under the condition
∫

∂M
δEhom(δΦ, δΦ) = 0. The algebra of the

asymptotic symmetries is the Poisson bracket algebra of the charges themselves,

δǫ̃Qǫ[Φ] ≡ {Qǫ[Φ, Φ̄], Qǫ̃[Φ, Φ̄]}CB =

∫

∂C

kǫ(δǫ̃Φ,Φ) ,

= Q[ǫ,ǫ̃][Φ, Φ̄] − N[ǫ,ǫ̃][Φ̄] +

∫

∂C

kǫ(δǫ̃Φ̄, Φ̄) , (3.24)

where the second line has been obtained from [17, 18]. The last term is recognized as the

central extension term in the algebra.

4 Charges for the general Lagrangian in four dimensions

In the previous section, we formally constructed the conserved charges for asymptotic

symmetries. In this section, we will explicitly calculate the conserved charges of the general

action (1.1) in four dimensions.

4.1 General action and equations of motion

The variation of the four-dimensional Lagrangian (1.1) is

δL =
1

16π

√−g

[

(g)Eµνδgµν + (A)Eν
I δAI

ν + (χ)ECδχC

]

+
√−g∇µXµ , (4.1)

where (g)Eµν , (A)Eν
I and (χ)EC are the equations of motion given by

(g)Eµν ≡ −Gµν − 1

4
gµνfAB(χ)∂ρχ

A∂ρχB +
1

2
fAB(χ)∂µχA∂νχ

B

−1

2
gµνV (χ) +

1

2
kIJ(χ)

(

F I
µρF

J
ν
ρ − 1

4
gµνF I

ρσF Jρσ

)

= 0 , (4.2)

(A)Eν
I ≡ ∇µ

[

kIJ(χ)F Jµν − ǫµνρσhIJ(χ)F J
ρσ

]

= 0 , (4.3)

(χ)EC ≡ −1

2
fAB,C(χ)∂µχA∂µχB + ∇µ

(

fCB(χ)∇µχB
)

− V,C(χ)

−1

4
kIJ,C(χ)F I

µνF Jµν +
1

4
hIJ,C(χ)ǫµνρσF I

µνF J
ρσ = 0 , (4.4)

and the total divergence Xµ is

Xµ(Φ, δΦ)=
1

16π

[

(∇νhνµ −∇µh)+ (−kIJ(χ)F Jµν + hIJ(χ)ǫµνρσF J
ρσ)aI

ν− fAB(χ)∇µχBδχA
]

.

(4.5)

Here, we define Φ = (gµν , AI
µ, χA), hµν = δgµν and aI

µ = δAI
µ. Then, the variation of

4-form Lagrangian is

δL = EδΦ + ∇µXµǫ = EδΦ + d ∗ X , (4.6)

where EδΦ ≡ ǫ
[

(g)Eµνδgµν + (A)Eν
I δAI

ν + (χ)ECδχC
]

/(16π) and the Hodge dual of Xµ is

defined by (∗X)αβγ = Xµǫµαβγ . From (3.1) and (4.6), we can read off the Θ as

Θ(δΦ,Φ) = ∗X(δΦ,Φ) . (4.7)

– 8 –
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The on-shell vanishing Noether current is given by

Sµ
(ξ,Λ) =

1

16π

[

2(g)Eµ
ν ξν + (A)Eµ

I (AI
ρξ

ρ + ΛI)
]

, (4.8)

in the vector form. We can rewrite the on-shell vanishing Noether current in the 3-form as

(S(ξ,Λ))αβγ = Sµ
(ξ,Λ)ǫµαβγ and it satisfies dS(ξ,Λ) = Eδξ,ΛΦ.

4.2 Current for the diffeomorphism

The Noether current for the diffeomorphism ξ (3.6) is

Jξ(Φ) = Θ(LξΦ,Φ) − ξ · L(Φ) . (4.9)

Now, it is convenient to define the vector current Jµ
ξ by (Jξ)α2α3α4 ≡ Jµ

ξ ǫµα2α3α4 . Then,

the Jµ
ξ is given by

Jµ
ξ (Φ) = Xµ(LξΦ,Φ) − ξµL(Φ) , (4.10)

where the L is the Lagrangian which does not include
√−g, that is, L =

√−gL. The Lie

derivatives for gµν , AI
µ and χA are given by

Lξgµν =∇µξν + ∇νξµ , LξA
I
µ =ξνF I

νµ + ∇µ(AI
νξ

ν) , Lξχ
A =ξµ∇µχA . (4.11)

We can rewrite Jµ
ξ + Sµ

(ξ,0) as a total divergence as

Jµ
ξ (Φ) + Sµ

(ξ,0)
(Φ) = ∇νY

µν
ξ (Φ) , (4.12)

where Y µν
ξ is defined by

Y µν
ξ (Φ) =

1

16π

[

∇νξµ −∇µξν + (−kIJ(χ)F Jµν + hIJ(χ)ǫµνλσF J
λσ)AI

ρξ
ρ
]

. (4.13)

Therefore, the Qξ defined by Jξ + S(ξ,0) = −dQξ is

Qξ(Φ) = − ∗ Yξ(Φ) , (4.14)

where the Hodge dual of Y µν
ξ is defined by (∗Yξ)αβ = (1/2!)Y µν

ξ ǫµναβ .

4.3 Current for the U(1)n-gauge transformation

In the general action (1.1), there are U(1)n-gauge symmetries and we can also construct

the current of the U(1)n-gauge transformation. The vector current for the U(1)n-gauge

transformation is

Jµ
Λ(Φ) = Xµ(δΛΦ,Φ) , (4.15)

where the U(1)n-gauge transformations for gµν , AI
µ and χA are

δΛgµν = 0 , δΛAI
µ = ∂µΛI , δΛχA = 0 . (4.16)

The Jµ
Λ + Sµ

(0,Λ) can be written as

Jµ
Λ(Φ) + Sµ

(0,Λ)(Φ) = ∇νY
µν
Λ (Φ) , (4.17)

where Y µν
Λ is defined by

Y µν
Λ (Φ) =

1

16π

(

−kIJ(χ)F Jµν + hIJ(χ)ǫµνρσF J
ρσ

)

ΛI . (4.18)

Therefore, the QΛ defined by JΛ + S(0,Λ) = −dQΛ is

QΛ(Φ) = − ∗ YΛ(Φ) . (4.19)
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4.4 Conserved charges

On-shell, the generator for the diffeomorphism ξ and U(1)n-gauge transformations ΛI is

given by

Qξ,Λ[Φ, Φ̄] =

∫ Φ

Φ̄

∫

∂C

kξ,Λ(δΦ,Φ) + Nǫ[Φ̄] , (4.20)

where Φ̄ is the reference solution and kξ,Λ is defined by (3.22) and can be written as

kξ,Λ(δΦ,Φ) = −δQξ(Φ) − δQΛ(Φ) − ξ · Θ(δΦ,Φ) + E
hom(δξ,ΛΦ, δΦ) . (4.21)

We can calculate the δQ’s by taking the variation of (4.14) and (4.19). The expression of

E
hom can be obtained from (3.23) and (4.7). We summarize the result as

kξ,Λ(δΦ,Φ) = k
grav
ξ + kF

ξ,Λ + k
top
ξ,Λ + k

χ
ξ , (4.22)

where

k
grav
ξ =

1

8π
(dD−2x)µν

{

ξν∇µh − ξν∇σhµσ + ξσ∇νhµσ +
1

2
h∇νξµ − hρν∇ρξ

µ

+
1

2
hσν(∇µξσ + ∇σξµ)

}

, (4.23)

kF
ξ,Λ =

1

16π
(dD−2x)µν

[{

− kIJ,A(χ)F JµνδχA + 2kIJ (χ)hµλF J
λ

ν

−kIJ(χ)δF Jµν − 1

2
hkIJ(χ)F Jµν

}

(AI
ρξ

ρ + ΛI)

−kIJ(χ)F JµνaI
ρξ

ρ − 2ξµkIJ(χ)F JνλaI
λ

−kIJ(χ)aJµgνσ(LξA
I
σ + ∂σΛI)

]

, (4.24)

k
top
ξ,Λ =

1

8π
(d2x)µν

[

ǫµνλσ{hIJ,A(χ)F J
λσδχA + hIJ(χ)δF J

λσ}(AI
ρξ

ρ + ΛI)

+ǫµνλσhIJ(χ)F J
λσaI

ρξ
ρ − 2ξνhIJ(χ)ǫµλρσF J

ρσaI
λ

−2hIJ(χ)ǫµνρσaJ
ρ (LξA

I
σ + ∂σΛI)

]

, (4.25)

k
χ
ξ =

1

8π
(dD−2x)µν ξνfAB(χ)∇µχBδχA . (4.26)

Here we define (dD−px)µ1...µp = 1
p!(D−p)!ǫµ1...µpαp+1...αD

dxαp+1 ∧ · · · ∧ dxαD , aI
µ = δAI

µ,

δF I
µν = ∂µaν−∂νaµ and δF Iµν = gµρgνσδF I

ρσ . Now, we are considering the four-dimensional

spacetime and substitute D = 4 into (4.23), (4.24) and (4.26), but all these equations

except (4.25) are applicable to any D ≥ 2 as well.

5 Central charges for four-dimensional extreme black holes

Now, we evaluate the central charge for the four-dimensional extremal black hole. In four

dimensions, the near horizon solution (2.1) can be written as

ds2 = Γ(θ)

[

−r2dt2 +
dr2

r2
+ α(θ)dθ2

]

+ γ(θ)(dφ + krdt)2 , (5.1)

χA = χA(θ) , AI = f I(θ)(dφ + krdt) . (5.2)
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We will use this solution as the reference solution Φ̄. First, we can check that the central

extension in the algebra of two asymptotic symmetries generated by Λ1(θ, t) and Λ2(θ, t)

is zero. Indeed, putting ξ = 0, δχA = 0, hµν = 0, Λ = Λ1(θ, t) and aµ = ∂µΛ2(θ, t), we see

that all expressions (4.23) to (4.26) are zero when evaluated on the sphere at infinity ∂C.

For the Virasoro generators (2.4), the algebra (3.24) becomes

i{Qm, Qn}CB = (m−n)Qm+n+i

∫

∂C

kξm,Λm
((δξn

+δΛn)Φ̄, Φ̄)−iN[(ξm,Λm),(ξn,Λn)][Φ̄] , (5.3)

where we define Qm = Qξm,Λm
[Φ, Φ̄] and ξm and ΛI

m are defined under (2.4). The central

charge will be read off from the second term on the right-hand side of (5.3).

Because of (δξm
+ δΛm)χA = 0, there is no contribution to the central charge from δχA

in (4.24), (4.25) and (4.26). Thus, the contribution from kχ is zero. The contributions

from kF and ktop are given by

i

∫

∂C

kF
ξ,Λ((δ

ξ̃
+ δΛ̃)Φ̄, Φ̄) (5.4)

= − ik

16π

∫

dθdφ

√

α(θ)γ(θ)

Γ(θ)
kIJ(χ(θ))fJ(θ)

[

ǫ̃′(f I(θ)ǫ + ΛI) − ǫ′(f I(θ)ǫ̃ + Λ̃I)

]

,

i

∫

∂C

k
top
ξ,Λ((δ

ξ̃
+ δΛ̃)Φ̄, Φ̄) (5.5)

= − i

8π

∫

dθdφhIJ (χ(θ))

[

(fJ(θ)ǫ+ΛJ),θ(f
I(θ)ǫ̃+Λ̃I)′− (f I(θ)ǫ̃+Λ̃I),θ(f

J(θ)ǫ+ΛJ)′
]

,

where we put ξ = ξ[ǫ] and ξ̃ = ξ[ǫ̃] and define ′ = ∂φ. One finds that the kF and ktop

vanish exactly due to the relation (2.4). The remaining contribution kgrav is

i

∫

∂C

k
grav
ξm,Λm

((δξn
+ δΛn)Φ̄, Φ̄)

= − ik

16π

∫

dθdφ

√

α(θ)γ(θ)

Γ(θ)

[

Γ(θ)(ǫ′mǫ′′n − ǫ′′mǫ′n) + γ(θ)(ǫmǫ′n − ǫ′mǫn)

]

=
k

4
δm+n

(

m3

∫

dθ
√

Γ(θ)α(θ)γ(θ) + m

∫

dθ

√

α(θ)γ(θ)3

Γ(θ)

)

. (5.6)

We can read off the central charge from the m3 term in (5.6) as

c = 3k

∫ π

0
dθ
√

Γ(θ)α(θ)γ(θ) . (5.7)

This is the same result as the one obtained in [5]. The charges kcov
ǫ (δΦ,Φ) defined in

the covariant phase space method differ from kǫ(δΦ,Φ) by the supplementary contribution

E
hom, see (3.22). However, we checked that these charges lead to the same results: the

contributions from kF ,ktop and kχ are zero and we can obtain the same central charge

as (5.7). Therefore, the covariant phase space method [19, 20] and the cohomological

method [16–18] give the same central charges.
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The term linear in (5.6) can be absorbed by an appropriate choice of normalization of

Q0. Indeed, if we choose

N(ξm,Λm) = δm,0
k

8

∫

dθ

√

α(θ)γ(θ)3

Γ(θ)
, (5.8)

the algebra (5.3) becomes

i{Qm, Qn}CB = (m − n)Qm+n +
c

12
m3δm+n . (5.9)

The temperature formula of the left handed dual CFT is conjectured in [5] from the

explicit calculation for the Kerr-Newman-AdS black hole as

TL =
1

2πk
, (5.10)

and, using the Cardy formula SCFT = (π2/3)cTL, we obtain the entropy of the dual CFT

SCFT =
π

2

∫ π

0
dθ
√

Γ(θ)α(θ)γ(θ) . (5.11)

This result agrees with the Bekenstein-Hawking entropy of the four-dimensional extremal

black hole (2.2).

6 Extreme black holes in five dimensions

In the previous section, we found that the central charges for the non-gravitational parts

vanish for the fairly general extremal black holes and we reproduced the Bekenstein-

Hawking entropy in four dimensions. We will show that this is also the case in five di-

mensions. Moreover, as far as the derivation of the charges is concerned, we will keep all

formulae general for any odd dimensions D ≡ 2N+1. We consider the (2N+1)-dimensional

generalization of the action (1.1),

S =
1

16π

∫

d2N+1x
√−g

(

R− 1

2
fAB(χ)∂µχA∂µχB−V (χ)− 1

4
kIJ(χ)F I

µνF Jµν +
1

2
F̃µν

I F I
µν

)

,

(6.1)

where

F̃µν
I = CIJK...Lǫµναβγ...ρσAJ

αFK
βγ . . . FL

ρσ . (6.2)

In five dimensions (N = 2), under some assumptions described in section 2.1, the near

horizon solution of the above theory (6.1) is given by (2.1) [22].

6.1 Conserved charges

The most of the calculation to obtain the expression of the conserved charges is the same

as the four-dimensional case and the gravitational, the U(1) and the scalar contributions

can be read off directly from (4.23)-(4.24)-(4.26). Thus, what we should consider is only
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the contribution from the Chern-Simons term in (6.1).6 In the similar fashion as done in

section 3 and 4, we can obtain the Chern-Simons contribution for the conserved charge as

kCS
ξ,Λ(δA,A) = −δQCS

ξ,Λ(A) − ξ ·ΘCS(δA,A) + ΣΛ(δA,A) + E
hom(LξA + dΛ, δA) , (6.3)

where

QCS
ξ,Λ(A) = − N

16π
(dD−2x)µν

[

F̃µν
I (AI

ρξ
ρ + ΛI)

]

, (6.4)

ΘCS(δA,A) =
N

16π
(dD−1x)µ

[

F̃µν
I δAI

ν

]

, (6.5)

ΣΛ(δA,A) =
N

16π
(dD−2x)µνCIJK···LΛIǫµνα3α4···αD−1αDaJ

α3
FK

α4α5
· · ·FL

αD−1αD
,

(6.6)

E
hom(LξA + dΛ, δA) = −N(N − 1)

8π
(dD−2x)µν(LξA

I
β + ∂βΛI)

×CIJK...Lǫµναβγ...ρσδAJ
αAK

γ . . . FL
ρσ . (6.7)

A shorter route to find the expression for the Chern-Simons contribution consists in first

writing the Noether current,

SCS
ǫ (A) =

1

16π
(dD−1x)µ

N + 1

2
CIJ...Kǫµαβ...ρσF J

αβ . . . FK
ρσ(AI

ρξ
ρ + ΛI) .

Since the current depends at most on the first derivatives of A, only the first term in (3.20)

contributes, and we get as a result

kCS
ξ,Λ(δA,A) =

N(N + 1)

16π
(dD−2x)µν(CIJ...Kǫµνγαβ...ρσδAJ

γ FK
αβ . . . FL

ρσ)(AI
ρξ

ρ + ΛI) . (6.8)

We have checked that the expressions (6.3) and (6.8) only differ by a total derivative and

that the expression (6.8) is identical to the one found in [28].

6.2 Central charge

Let us calculate the central charge for the near horizon metric of the five-dimensional

extremal black holes (2.1). For each set of the boundary conditions (2.6) and (2.7), there are

two asymptotic symmetries given in (2.8). For each of these sets of asymptotic symmetries,

the contribution to the central term from the scalar fields is zero because of (δξi
+δΛi

)χ = 0.

The contributions from kF and kCS are

i

∫

∂C

kF
ξ(i),Λ(i)

((δ
ξ̃(i)

+ δΛ̃(i)
)Φ̄, Φ̄) (6.9)

= − i

16π

∫

dθdφ1dφ2

√

α(θ)γ(θ)

Γ(θ)
kIJ(χ)

∑

j

kjfJ
j (θ)

[

ǫ̃′(f I
i ǫ + ΛI

(i)) − ǫ′(f I
i ǫ̃ + Λ̃I

(i))

]

,

i

∫

∂C

kCS
ξ(i),Λ(i)

((δξ̃(i)
+ δΛ̃(i)

)Φ̄, Φ̄) (6.10)

= − 3i

8π

∫

dθdφ1dφ2CIJKf I
j,θ

[

(fJ
i ǫ + ΛJ

(i))(f
K
i ǫ̃ + Λ̃K

(i))
′ − (fJ

i ǫ + ΛJ
(i))

′(fK
i ǫ̃ + Λ̃K

(i))

]

,

6The conserved charges for the Chern-Simons Lagrangian has been already calculated in [28] and in [29–

31] without the supplementary term E
hom.
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where we put ξ(i) = ξ(i)[ǫ], ξ̃(i) = ξ(i)[ǫ̃], γ = det(γij),
′ = d/dφi and, in (6.11), j 6= i.

Substituting the explicit form of ΛI
(i) in (2.8), we can find that the contributions from kF

and kCS vanish exactly. The contribution from kgrav is

i

∫

∂C

k
grav
ξ(i)m,Λ(i)m

((δξ(i)n + δΛ(i)n
)Φ̄, Φ̄)

= − i

16π

∫

dθdφ1dφ2

√

α(θ)γ(θ)

Γ(θ)

[

kiΓ(θ)(ǫ′mǫ′′n− ǫ′′mǫ′n) +
∑

j

kjγij(θ)(ǫmǫ′n− ǫ′mǫn)

]

,

=
(2π)2

8π
δm+n



m3ki

∫

dθ
√

Γ(θ)α(θ)γ(θ) + m

∫

dθ

√

α(θ)γ(θ)

Γ(θ)

∑

j

kjγij(θ)



 . (6.11)

From the m3 term in (6.11), the central charges are found to be

ci = 6πki

∫ π

0
dθ
√

Γ(θ)α(θ)γ(θ) for i = 1, 2 . (6.12)

Even if we put E
hom = 0, we can get the same central charge. So the covariant phase

space methods [19, 20] and the cohomological methods [16–18] give the same results even

in five dimensions.

The temperature formulae of dual CFTs are conjectured in [7] starting from the higher-

dimensional Kerr-AdS black holes as

Ti =
1

2πki
for i = 1, 2 . (6.13)

Thus, using the Cardy formula, we can obtain the entropy of the dual CFTs as

SCFT =
π2

3
c1T1 =

π2

3
c2T2 = π2

∫ π

0
dθ
√

Γ(θ)α(θ)γ(θ) . (6.14)

The two boundary conditions (2.6) and (2.7) give the same entropy. This result coincides

with the Bekenstein-Hawking entropy of the five-dimensional extremal black hole (2.2).

7 Conclusion

Any extremal black hole in generic 4d Einstein-Maxwell-scalar theory with topological

terms and 5d Einstein-Maxwell-Chern-Simons-scalar theory has a near-horizon geometry

whose asymptotic symmetries contain one (in 4d) or two (in 5d) centrally-extended Virasoro

algebra(s). We checked that only the Einstein Lagrangian contributes to the value of the

central charge, and therefore, assuming the conjectured temperature, that the Bekenstein-

Hawking entropy of any extremal black hole is correctly reproduced. These results support

the extreme black hole/CFT duality suggested in [5].

The central charges have been computed using both cohomological and covariant phase

space methods and have shown to agree. Our results are expected to hold in any dimension,

because the expressions for the charges and the near-horizon metric are straightforward

generalizations of the four and five-dimensional cases.
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In the derivation of the central charge, we used the general action (1.1) and the near

horizon extremal metric (2.1) which can be obtained from (1.1) under very mild assump-

tions. In particular, the result holds for any topology of the horizon except TD−2. There-

fore, our result is applicable to five-dimensional black holes with non-trivial topology such

as the black rings [32, 33] as long as the horizon is simply connected. Extremal black

saturns and di-rings solutions are not known but are conjectured to exist (see e.g. [34–38]).

In the case of the black holes with disconnected horizons, including the extremal black

saturns and di-rings, we could apply the extreme black hole/CFT correspondence to each

horizon. Then the Bekenstein-Hawking entropy would be reproduced as the sum of the

entropies of dual CFTs.
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[7] D.D.K. Chow, M. Cvetič, H. Lü and C.N. Pope, Extremal black hole/CFT correspondence in

(gauged) supergravities, arXiv:0812.2918 [SPIRES].

[8] H. Isono, T.-S. Tai and W.-Y. Wen, Kerr/CFT correspondence and five-dimensional BMPV

black holes, arXiv:0812.4440 [SPIRES].

[9] T. Azeyanagi, N. Ogawa and S. Terashima, The Kerr/CFT correspondence and string

theory, arXiv:0812.4883 [SPIRES].

– 15 –

http://arxiv.org/abs/0809.4266
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.4266
http://dx.doi.org/10.1007/BF01211590
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA,104,207
http://dx.doi.org/10.1088/1126-6708/2009/04/054
http://arxiv.org/abs/0811.2225
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.2225
http://dx.doi.org/10.1088/1126-6708/2009/04/061
http://arxiv.org/abs/0811.4177
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.4177
http://dx.doi.org/10.1088/1126-6708/2009/04/019
http://arxiv.org/abs/0811.4393
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.4393
http://dx.doi.org/10.1016/j.physletb.2009.02.031
http://arxiv.org/abs/0812.2234
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.2234
http://arxiv.org/abs/0812.2918
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.2918
http://arxiv.org/abs/0812.4440
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.4440
http://arxiv.org/abs/0812.4883
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.4883


J
H
E
P
0
5
(
2
0
0
9
)
0
7
7

[10] J.-J. Peng and S.-Q. Wu, Extremal Kerr black hole/CFT correspondence in the five
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